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SUMMARY 

In this first part, collections of linear hyperbolic initial boundary value problems are treated which are de- 
fined via sets of coefficient functions in the differential equations. If the solutions are oscillatory, the non- 
linear dependency of the solutions on coefficients becomes more and more ill-conditioned as time progresses, 
unless there is a sufficiently strong damping term in the differential equation. For the problem of dynamic 
buckling, the theory of the Neumann series yields a sufficient condition for the uniform boundedness of the 
oscillatory solutions which are induced by arbitrary continuous transient perturbations whose range is restricted 
to a suitable interval. In this part I, there is an introductory discussion of the Taylor-representation of sets of 
solutions in terms of constant coefficients. Via such a Taylor-representation, it is shown that solutions of the 
'distortionless' telephone line are insensitive to sufficiently small variations of the constant coefficients in this 
hyperbolic differential equation. 

1. Introduction 

The widespread occurrence o f  wave phenomena in geology, mechanics, optics, physics, astron- 

omy and a variety o f  engineering fields is well-known. A substantial number o f  these problems 

are modeled by hyperbolic systems, but probably the majority are not  hyperbolic (e.g. water 

waves, dispersive waves). But, regardless o f  the equation type,  the difficulties created by impor- 

tant physical and geometric nonlinearities are substantially multiplied by the fact that in real- 

world problems the input (physical) data are generally poorly known. All too often the model  

equations, hyperbolic or not,  possess boundary and initial data, coefficients and perhaps forcing 

functions which cannot be defined as precisely specified values or functions. In such cases it 

may be possible to identify input  sets which contain a particular input property in every possible 

case or, at least, in a substantial majority of  the cases. 

* This research has been substantially supported by NATO Senior Scientist Grant SA. 5-2-05B(1761)178(79) 
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Input sets are assumed to be weU-def'med in the sense that they possess well-defmed bound- 

aries in a finite-dimensional space or o f  the range o f  a set of  functions. The input sets considered 

here consist o f  (a) every real vector in a compact subset o f  a Euclidean space, or (19) every con- 

tinuous function on a certain domain with perhaps a fixed maximum Lipschitz constant or (c) a 
collection o f  special functions such as, e.g. 

N 

Z ate sin/3Kx with every/3 K and/or t~/~ from given real intervals. (1.1) 
K = I  

It will be shown in Sections 2 and 3 that the admission of  every (Lipschitz) continuous data 

or coefficient function, whose range is in certain intervals, may induce an instability such as res- 

onance or parameter resonance, provided the solutions are oscillatory. Consequently, it is a 

difficult task to select a set of  comparison data or coefficients which do not contain special 

functions yielding such an instability, unless the real-world problem being treated also is subject 

to these difficulties. Because o f  this reason, it may be desirable to restrict the admitted com- 
parison functions to special collections such as in (1.1). 

The main purpose o f  the (second part o f  the) paper is the development o f  methods for the 

construction o f  a sharp outer approximation of  the range o f  a set o f  solutions. I f  the problems 
under consideration are inverse monotone,  this task can be resolved by use of  differential in- 
equalities and related theories such as that o f  M-matrices, see [11], [13], and [9]. Since the class 

o f  inverse monotone operators is rather restricted as compared with the multitude of  mathe- 

matical models o f  real-world problems, it was necessary to develop appropriate constructive 
methods. The methods are based in particular on (i) the theory o f  the Neumann series in the 

case o f  linear operator equations, (ii) Taylor-expansions in the case o f  constant parameters, and 
(iii) boundary mapping of  the boundary o f  a data set onto the boundary o f  a set of  solutions, if 
this mapping holds. 

Even in the case of  a collection o f  linear operator equations 

A (z)u = f with every z from an admitted set, (1.2) 

the dependency of  the solutions u on the coefficients z is nonlinear. In the majority o f  cases, 
transient waves are represented by oscillatory solutions, and the combination o f  this type of  

solution with the occurrence o f  sets o f  coefficients generally causes the nonlinear dependency 

of  the solutions on the coefficients to become more and more ill-conditioned as time progresses, 
i.e., very small changes of  z cause large changes o f  u. This nonlinear dependency o f u  on z (at 

fLxed values of  the independent variables) is perhaps a more serious difficulty in the develop- 
ment of  efficient constructive methods than the nonlinear dependency o f  u on the data f i f A  
is nonlinear. 

Even in the case of  an explicit representation o f  a set of  solutions on both the independent 
variables and the coefficients, it is generally difficult to determine the range o f  the set o f  solu- 
tions or to detect special properties of  the dependency o f  the solutions on coefficients. It is 
demonstrated in Section 6 that these difficulties can be resolved via a Taylor-representation o f  
the set of  solutions in terms of  the coefficients if these are constant (parameters). I f  the solu- 
tions are not known explicitly, the dependencies on such parameters can still be treated via a 
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Taylor-representation, as will be shown in the second part. An appropriate estimate of  the re- 
mainder term yields a quantitative error estimate for a truncation of the Taylor-expansion. 

In the majority of  real-world problems, the choice of  the bounds of the input sets is as dif- 
ficult as the choice of a fixed 'nominal' input. In such cases, it is desirable to execute a quanti- 
tative sensitivity analysis of  the dependency of  the solutions u on the coefficients or data. In 
this analysis, nested input sets may be assumed which contain the nominal coefficients or data. 
For each combination of fixed choices of  sets of  coefficients and data, an outer approximation 
of the set of  solutions is constructed. Consequently, a generally nonlinear relationship between 
the ranges of the input sets and the output set of solutions is constructed which reveals quan- 
titatively the sensitivity of  the dependency of u on z and f.  As an application, in Section 4, the 
sensitivity of  the solution of a dynamic buckling problem with respect to transient periodic per- 

turbations is analyzed and, in particular, sufficient conditions on the parameters are given to ex- 
clude parameter resonance. 

A sensitivity analysis can also be carried out (see Part II) to study the dependency of the so- 
lution of a discrete analogy on the local discretization error. Such an estimate of  the relationship 
between the local and the global discretization error is useful since (i) the customary criteria for 

stability and convergence do not yield a quantitative relationship between these errors and (ii) 
such criteria are almost entirely unknown for discrete analogies of  nonlinear wave problems. 

2. On ill-conditioned properties with respect to data 

A complete sensitivity analysis of a mathematical model demands a quantitative comparison of 
a 'basic solution', u(x ,3'o), pertaining to a given coefficient or data, 3'0 (x), with a set of 'neigh- 
boring solutions', u (x,3'), referring to neighboring coefficients or data, 3'(x), from a set S~. 

Here, x stands for any number of  independent variables. A set, S.r, of  'comparison functions' 3' 
has to be selected suitably such that 3'0 ~ S~,. The dependency of u on 3' is ill-conditioned if 
small changes of  3' yield large changes of u, which obviously causes difficulties in the application 
of constructive methods. 

The quantitative sensitivity analysis would be considerably simplified if the values of the 
range of solutions, pertaining to S.r, were bounded (globally or piecewise) by special solutions 
pertaining to the boundaries, 3'_ and 3'+, of the range of admitted functions 3' E S~. Unfortu- 
nately, this desirable property holds true generally only for inverse-monotone operators and 
then generally only if 3' stands for data .Only in that case, interval mathematics yields sharp 
bounds of the range of  the set of  solutions by relating bounds of this range to only 3'_ and 3'+. 
If  the problem is not inverse monotone, interval mathematics [8], [1] generally yields overesti- 
mates or underestimates of  the range of  the set of  solutions, as will be shown. 

The following hyperbolic ibvp (initial boundary value problem) is considered as an example: 

a2U ~ e u  
~ t  2 aX 2 =go(t) sinx for (x , t )E{ (x , t )  1 0 < x < z r ,  t > 0 } ,  

U(x, o) : Uo sin x,  aV(x,  o) Ot - u  1 sinx for x@[O,~] ,  Uo,Ul E ~ ,  (2.1) 

U(O, t) = U(n, t) = 0 for t E J := (0, oo), go ~ C(J). 



26 

A quantitative sensitivity analysis will be carried out now with respect to the forcing function 
go sin x. A separation o f  variables yields 

! U tp + U go (t) for 

U(x, t) = : u (t) sin x ~ ~1 

t u(O) = Uo, u'(O) = u~. 

t E J ,  

(2.2) 

Here, a : = b or b = : a means that  a is defined to be b. For the purpose of  the sensitivity analysis, 
(2.2) is embedded in the following collection of  ivp (initial value problems) with a set Sg of  
comparison functions: 

u "  + u  = g ( t )  for t E J ,  u ( 0 ) = U o ,  u ' ( 0 ) = u l ,  (2.3) 
every g E Sg : = [g_,  g+] A C(J), such that go E Sg. 

The set o f  solutions, Su, is a subset o f  the set C2(j) .  

i. Construction of bounds for the range of  the set of  solutions 
For any fixed g E Sg, the corresponding ivp in the collection (2.3) possesses the solution 

u(t) = f t  G(t, s)g(s)ds + o(t) 

J G : =  sin (t - s), 
where / 

o : = u o  c o s t + u 1  s int .  

A function u+ E C(J) is defined as follows: 

u+( t ) :=  f t  G(t, s)gt(s ) ds + o(t) where 

{g+GifG(t,s)>~O } 
Gg t : = sup (G (t, s) g(s)) = locally for (t, s) E J x J fixed. 

gESg g_G if  G(t, s) < 0 

Because of  

G(t, s)g(s) <<, sup (G (t, s)g(s)), every (s, t) E J x J ,  every g E Sg, 
gES g 

there holds 

u(t)<~u+(t) foreverytEJandeverygESg,  

with u_  correspondingly defined via inf instead of  sup in (2.5).  

(2.4) 

(2.5) 

(2.6) 

(2.7) 
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ft. The bounds u ,  and u_ are sharp 
For any fixed t E J, the det'mition o f g  t implies that the discontinuous changes o f g  between g+ 
and g_ take place precisely at those equidistant points s(t") where G(i, s(i)) vanishes, i.e., 

G gt c ( s  x a3, (2.8) 

i E J, there exist sequences of continuous functions gi (v) with v E lq such (2 O5)D For each s ee  

that 

lim g~tVI(s) =gi(s) for every s EJ~{f}and every fLxed f E Z  
V " + ~  

(2.9) 

For each such fixed gi (u) E C(J)with v E IN fixed, the corresponding solution of (2.3) is 

ut(V):= o + f o  Ggi(V)ds E C2(J). (2.10) 

From (2.5) and (2.10), 

lu+(t)_ut(U) l = I f  t G(g t -  gt(v))ds I =* 

I u+(t) - ut (u) I<~ sup I G(t, s) i£ 
(t ,s) Ear × J 

lgt(s ) - gt(V)(s) l ds. 
(2.11) 

Even though the sequence (gt (v)) converges non-uniformly, the integral tends to zero as v -+ oo, 

i.e., 

lira lu+( t ) -u t (V)  I~<lim I lg t -g t (V)  lll f o r e v e r y t E J ,  

b 
I1~111 := I~(s)lds for ~ : [ a , b ] - + ~ .  

(2.12) 

For every fixed t E J, therefore, there is a solution ut(V) E S u which for sufficiently large v E tN 
has an arbitrarily small distance from u+(t). 

iii. Comparison with a resonance-type problem in mechanics 
Without any loss of  generality, it is assumed that g_ and g+ are constant such that 

6 : = - g _  =g+ EIR + for t E J ,  (2.13) 

which is subsequently denoted as Case I. Then, 
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u÷=o+6S 

s ( t )  : = 

=~ S(t)= 2m + ftm~ 

a n d  u _  = o - - 6 S  

I G(t, s) [ ds with gt = 

I sin (t - s) I d s 

for t E J where 

{ 66ifG(t's)>~Otlocally 

- i fG(t ,s)<O 

for t E (mTr, (m + 1) rr], m E IN. 

(2.14) 

For comparison, Case H is defined as follows: 

t t  
u + u = 6 s i n t  for tEJ ,  u ( 0 ) = U o ,  u ' ( 0 ) = u l  =* 

u(t)=o(t)+6[(_l)rn+l 7r f t  - m + (sin s)(sin(t - s))ds] 
2 7r 

for t E (mrr, (m + 1)rr], m E N .  

(2.15) 

Whereas the nonexistence o f  u as t ~ ~ in Case II is the classical resonance phenomenon, the 
nonexistence o f  u+ as t ~ oo in Case I may be denoted as super-resonance; the higher rate of  in- 

crease of  u+ as compared with that o f  the maxima o f u  is due to the fact that u+ is generated by 

selecting a suitable function gi for every fixed [ E  J. As compared with the sharp bound u+, an 
upper bound ~+ of  the range o f  the set o f  solutions u can be defined in the spirit o f  interval 

mathematics by use o f  an independent treatment o f  G and g in (2.4): 

r t  
~+ := o + J o  Max {G-g_, G_g., G÷g_, G÷g+}ds = o + 6 "t if~i = --g_ =g÷ E ~÷ 

where G _ = 0  and G÷ = - 1 .  
(2.16) 

Due to 2m < rrm, there holds ~-÷(t) > u+(t) for t > 0; consequently, this application o f  interval 
mathematics to a non-inverse monotone problem yields an overestimate o f  the range of  solutions. 

iv. Conclusions 

For any arbitrarily small ~i E F, +, the admission of  every g E Sg := [-- 5 , 6  ] n C(J) causes the 

collection o f  solutions U = u-  sin x o f  (2.1), (2.2), (2.3) (a) to be unstable and unbounded if t E 
(0, oo) and (b) to be ill-conditioned if t E [0, T], with a sufficiently large fixed T(8) E ~1 +. 

Remark 1. Here, the span of  the interval [u_, u+] (t) has been maximized by use o f  the 'con- 
trol functions'  g E Sg, and the gt are the optimal policies realizing the maximum. 
Remark 2. Due to damping (or a nonlinearity) in 'real' problems, there is usually no unbound- 
ed increase o f  u or u+ as t ~ oo. If  a linear damping law is additionally taken into account, the 
differential equation in (2.3) is replaced by 
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u " + b u ' + u = g  for tEJ:=(O,oo),  b E I R  +, 
u ( 0 ) = U o ,  u ' ( 0 ) = u l ,  everygESg:=[g_ ,g+]nC(J) ,  (2.17) 

which yields 

a(t,s)---~ x p ( - b ( t - s ) / 2 ) ) ( s i n ( t - s )  for ( t , s ) E J x J ,  X = x / 4 - b  2 (2.18) 

The collection of  ivp (2.3) is reconsidered for the case of  - g _  = g+ E N + only. The solution 

then is given by  

u=g+ +(u(O)-g+)cos t  +u'(O)sint  for t E J .  (2.19) 

For g_ E IR, also a uniformly bounded solution is obtained. Consequently, an underestimate of  

the range of  solutions is obtained by  use o f  this naive application of  interval mathematics which 

consists in a construction of  u_ and u÷ via only the two elements g_ and g+. Compare (2.16) for 
an appropriate employment  of  interval mathematics.  

3. On ill-conditioned properties with respect to coefficients 

The following hyperbolic ibvp is considered as an example: 

a2U C2o(t) --a2U = 0  for ( x , t ) E ~ ( x , t ) l O < x < n , t > O } ,  C2oEC(O,~), 
at 2 ~x 2 

U(x, O) = O, aU(x, 0________) _ sin x for x E [0, ~r], 
a t  

(3.1) 

U(0, t) = U(Tr, t) = 0 for t E J : =  ( 0 , ~ ) .  

2 A quantitative sensitivity analysis will be carried out now with respect to the coeffcient c o . A 
separation o f  variables yields 

! IF C20 U + (t) u 0 for 
U(x, t )  = :  u ( t )  sin x ~ 

t u(O) = O, u'(O) = 1. 

t E J  := (0, oo), 

(3.2) 

For the purpose of  the sensitivity analysis, (3.2) is embedded in the following collection of  ivp 
with a set o f  coefficients c 2 E S c: 

u " + c  2(t) u = O  for t E J ,  u (O)=O,  u ' ( O ) = l ,  
c 2 E S c := [c 2 , _  c2+] n C(J) with c_ ,  c+ E • such that  c 2_ < c~. and c~ E S e. (3.3) 
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i. A special solution o f  the collection o f  ivp 

Just as in Section 2, a step function is chosen: 

t ~2 :=c 2 for tE( t2u ,  t2t~+l], C21t _ 

^2 
c2u+1 := c~ for t @ (t2~+l, t2tz+2], 

to = O, c_( t2u+l  - t2u) = c+(t2u+2 - t2u+l) = -~, (3.4) 

with p + 1 E IN. 

The function c~ can be approximated with arbitrary accuracy in the L l-norm such that the 

elements o f  the approximating sequences belong to the set S c. A sequence o f  auxiliary ivp is de- 

fined: 

tr 
u~ + e~ u~ = 0 

u(i_) 1 (tv) = u(i)(tv) 

t 
Uo(0) = 0, Uo(0) = 1. 

Via an induction, it is shown that there holds 

for t E ( t v ,  tv+l],  

for v + l E N a n d i = 0 o r l ,  (3.5) 

u(t) = ,  

(-- 1)Uq u 
C -  

(-- 1)Uq u 
C _  

- -  sin(d2u(t--t2u)) for t E  [t2t~,t2u+l], 

- -  COS (~2U + 1 (t --  t2/~+ 1 )) for t E  [t2~t+ 1, t2#+2] , 

(3.6) 

C ÷  

w i t h p + l E i N a n d q : =  i ,  

C _  

Clearly, 

lim I u(t) I = oo for the choice of  c~ in (3.4). (3.7) 
t--~ oo 

The nonexistence o f  u in (3.7) is due to the fact that the switch from c_ to c+ is carried out 

precisely at the times t when u '(t) -- 0 and, thus, the kinetic energy of  the oscillation vanishes. 
Then, c÷ is employed only for such an interval o f  time that u(t) = 0 is reached with a corre- 
spondingly large slope, as an initial condition for the continuation o f  the solution with c_ .  The 
nonexistence of  u in (3.7) also occurs if the switch from c_ to c+ is not carried out at every 
time t when u '(t) vanishes but rather only at the times t2u and t2u+ l ,  defined by 
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Figure 3 . lb .  Parameter resonance 
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/7 
c_(t2u+~ - t2u) = (2n + 1) 

Tf 

C+(t2t~+2 - t2u+l) = "~' 

with /a+ 1 ,n  + 1CI~I, 

(3.8) 

see Fig. 3.1a for the initial stage o f  oscillation in the case of  n = 0 and Fig. 3.1b for the case 

o f  n = 1, where c+ = 2 and c_ = 1 have been chosen in both cases. 

ii. Comparison with the problem o f  parameter resonance in mechanics 

In many examples, the problem o f  parameter resonance (e.g., [3, p. 225-235] and [4]) can be 

reduced to the study of  the Mathieu equation 

" co 2(1 cosvt )u  0 for t E J :  (0, oo) U -I- - - e  = = 

with u(O)=uo,u ' (O)=ul;6o,  e,V, Uo,Ul EIR, 
(3.9) 

e.g., [6, p. 279-292]. The shaded areas in Fig. 3.2 represent domains of  instability of  the solution 

of  (3.9). For any corresponding choice of  6o, v, e, therefore, the limit o fu  does not exist as t-~ ~.  

Remark 1. If  there is an additional damping term, bu', in the differential equation in (3.9), 

then the width o f  the shaded areas in Fig. 3.2 tends to zero according to relations given in [3, p. 

235]; in particular, there holds for the first shaded area, pertaining to 26o/v = 1, 

1 -  - 4 ~ -  < < 1 +  - 4  v- 5 

c 2 b 2 
=~ stability if ~-  < 4 v-- q • (3.10) 

Remark 2. The results in Fig. 3.2 and (3.10) are due to truncations (with the terms of  the 

third order) o f  series expansions o f  both u(t, e, v) and 6o 2 (e, v); compare Section 4 for an inde- 

pendent analysis o f  the problem of  parameter resonance. 

y y 
Figure 3.2. Stability diagram. 
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iii. Comparison o f  parts (i) and (ii) 

The shaded regions o f  instability in Fig. 3.2 pertain to the following ratios 2~ /v :  

( ~ ) 2  =(n + 1)2 with n + 1EI~/  =~ 

Xc n +  1 2zr 
= where ~c : = - -  

~u 2 ' v 

2~ 
and ~ := - -  6O 

(3.11) 

Here, he and Xu are the wave langths required for one full cycle of  the functions co 2 (1 --  e cos vt) 
and u, respectively, see (3.9). Due to (3.8), the execution of  the first complete cycle of  the 
oscillatory function c~ requires 

(4 )  (n l) ~c =c-t1 + c + ( t 2 - t l ) =  2n____~2 21 r -  ~ + ~  - -  27r, (3.12) 

where ~c is the wave length of  this first cycle. During this interval o f  time, ~c, the solution u 
executes (n + 1)/2 complete cycles, each of  wave length ~u; i.e., the dependency on n of  the 
solution u, due to switching between c_ and c+, corresponds precisely to the numbers (n + 1) 2 

characterizing the shaded areas in Fig. 3.2, see (3.11). A comparison o f  the special excitation 
modes c~ due to (3.8) with Fig. 3.2 shows that  there are non-denumerably many other coef- 
ficients c 2 E S e yielding an unbounded response as t ~ ~ .  

iv. General results for the ivp under discussion 

According to [2, p. 111-113], the solutions of  

u "  + (1 + ~ (t)) u = 0 for t E J := (0, oo) with 

(i) lim ~( t )  = 0 and fo~ I~b(t) I dt  < ~ or 

(ii) ¢ tends monotonical ly to infinity as t -~ ~ ,  

(3.13) 

are bounded as t ~ ~ .  The differential equations in (3.9) or in (3.3), (3.4) do not satisfy the 
conditions given in (3.13). The nonexistence o f  the limit o f  u as t ~ ~ in (3.9) or (3.3), (3.4), 
therefore, is due to the oscillatory character o f  the coefficients in (3.3) or (3.9) which persists 
a s t ~ .  

v. Conclusions 

2 2 For any arbitrarily small ~ := c 2 - c 2 _ E ~ + ,  the admission of  every c 2 E S e := [c_, c+] tq C(J) 
causes the collection of  solutions U = u sin x of  (3.1), (3.2), (3.3) (a) to be unstable and un- 
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bounded if t E (0, oo) and (b) to be ill-conditioned if t E [0, T] with a sufficiently large fixed 
T(6) E ~+. Here and in Section 2, it is concluded that a comparison of a given coefficient func- 
tion with the functions in an embedding set of  comparison coefficients involves the risk of thus 
admitting neighboring solutions which deviate arbitrarily from the given solution as t ~ oo. 
Remark 3. Failure due to parameter resonance is also known to take place for classes of non- 
linear ivp, [3] or [4]. By use of  a separation of  variables, this then immediately holds for suit- 

able hyperbolic ibvp. 

4. Sufficient conditions for the uniform boundedness of the response of a perturbed 
dynamic system 

Transverse vibrations of a beam are considered which is subject to an axial compressive force, 
see Fig. 4.1. The flexural rigidity, El, of the beam is assumed to be constant. The beam possess- 

es the constant mass, m, per unit length and the damping constant, a, in a linear damping law, 
a ay/at, of the transverse mot iony(x ,  t). Due to some external circumstances, the axial force is 
not stationary but rather may be subject to a time-dependent perturbation with small amplitude. 
This amplitude generally is not known quantitatively; however, it is possible to carry out a 
quantitative sensitivity analysis which admits every axial compression force in the following set: 

e = e 0  every/' S. := n C(J) 
E 

Po E IR + is fixed. 

with t E J : = (0, ~),  (4.1) 

According to [4, p. 10], with the additional consideration of the damping term, this collection 
of problems possesses the mathematical model 

EI ~4y b2__Zy ay O2y ax-'-~ + ( P o + E )  Ox 2 +a  ~ - + m - ~ - = 0  for ( x , t ) E G : = ~ ( x , t ) l O < x < L ,  

02y(0, t) a~y(L, t) 
tEJ} ;  y ( O , t ) = y ( L , t ) =  ~x 2 - ~x 2 - 0 for t E J ;  (4.2) 

oy(x, o) 
y (x, 0) = sin k nx/L, ~ = 0 for x E [0, L ] 

El, a, m E IR + are fixed, every/~ E S~. 

÷~ 

vyYJ) , Figure 4.1. A dynamic buckling problem. 
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Here, a fixed initial position and a vanishing initial velocity have been assumed additionally. 
The separation of variables, 

y ( x , t ) = : u ( t ) s i n ( k T r x / L )  for ( x , t ) • G  (4.3) 

satisfies (4.2) if there holds 

mu " + au ' + (k2 rt2 /L Z ) (E l  k21r2 /L 2 - eo - E( t))u = 0 

u ( 0 ) = l , u ' ( 0 ) = 0 ,  every E • S ~ .  

for t E J, (4.4) 

By use of simpler notations, (4.4) can be rewritten as follows: 

u "  + au'  + &2u = w2e(t) u for 
~ : = a / m ,  w2:=Pok27r2/mL 2 , 

every e E S e : =  [-eo,e0]  n C(J) ,  

t • J ,  u(O)= l ,  u'(O)=O, 
cb:= (k2 rr2 /L  2m)(  EI  k2 rr2 /L 2 -- Po ), 

eo :=/~ok 2 ~r2 / m L  2 : J ~ IR. 
(4.5) 

The following three cases will be examined in detail: 

(I) a =  0 and e(t):=eo, exp(--/3t) witheo. • ~ , / 3 E I R  + fixed, 
(II) /3=0 and a , e ~ E l R  +are fixed, 

(III) suitable combinations of a,/3, eo, • IR + are admitted. 
(4.6) 

Remark. Case (I) satisfies the condition (i) in (3.13) for every/3, eo. • ~+.  I f a  is sufficiently 
large, case (II) is consistent with stability according to Fig. 3.2. In the following analysis real in- 
tervals [-~**, e-.o], [0, a] ,  and [0, ~] will be identified such that parameter resonance can be 
excluded for every combination of e.o a, and/3 from these intervals. Correspondingly, the dy- 
namic buckling problem then is insensitive with respect to these admitted perturbations. 

By use of the left hand side in (4.5), Green's function is 

2 
G( t , s )  := ~ exp ( - a ( t -  s)/2)sin ~ ( t -  s) 

~. := x/463 2 - a 2 " 

for ( t , s ) E J x J ,  (4.7) 

The case of oscillatory (i.e. non-monotone) solutions holds if the following condition is satisfied: 

4632 > a 2 . (4.8) 

The collection of ivp (4.5) can be represented equivalently via the collection of Volterra integral 
equations 

£ u(t) = o(t) + G(t ,  s) eo2e(s)u(s)ds for t E J, (4.9) 

o: = exp (-o~t/2) cos Xt/2, every e E Se, 
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or the collection of  operator equations 

( 1 -  Fe )u  = o where Iu := u, e v e r y e E S e ,  

Fe[U](t ) := ~° 2 f t  G ( t , s ) e ( s ) u ( s ) d s  for t E J .  
(4.10) 

There holds 

26o 2 
IFe[u](t) l<~ ---if- I l u l l . ~ f 2  e - a ( t - s ) / 2 1 e ( s ) l d s  << . liFe IIo0 Ilull~, ,  

Ilull :=sup  lu(t)  l => IIF e Iloo - 2602 s u p / " t  e - a ( t - s ) / 2 l e ( s ) l d s  = (4.11) 
00 t C J  ~k t E J d  O 

2602 e - (  It _ e -a t~2  
T co. sup 1 

t E J -i Ol - -  [J 

due to the customary definition of  the norm of  an operator,  i.e., 

2G32 eoo 
Case (I): IIF e II** < 1 i f ~ =  0 and 2~----~ < 1; 

4¢.a02 e~ 
Case(II):  liFe tl= < 1 if~3= 0 and < 1 .  

(~/4~ 2 - ~2)o~ 

(4.12) 

The condition l i f e  II oo <~ 1 can be satisfied if e** E nq ÷ is sufficiently small, irrespective of  
whether the damping constant a E nq + is zero or not.  Then, (4.10) can be solved via the Neumann 
series e.g. [10], for every admitted e E Se: 

u = ( 1 + F  e +F2e + ...)o for t E J  

! if IIF e II.o < 1 
for every e E S e, every t E J. (4.13) 

Since q := IIF e IIoo < 1, the truncation of  the series with the ftrst term, o, possesses the well- 
known error estimate q II o II ** (1 - q ) - i  which implies that  the sum o f  this series is uniformly 
bounded for t > 0. 

The set o f  functions S e contains the special trigonometric functions 

/~ = PI cos vt with PI E ~ +  ftxed and every v E ~1, 

e = ( k21r2 /L2m)e l  cos ut, 
(4.14) 

which appear in the special realization of  the mathematical  model (4.2) governing the theory of  
parameter  resonance. 
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This kinetic instability (see Section 3) can be excluded for every combination of the real 
parameters a, ~, and e** satisfying I[ F e tl~ < 1. This result admits every continuous perturba- 
tion e E Se such that lel ~< ~** exp (--~t) for t EJ .  In the literature ([3] ,  [4] ), the problem con- 
sisting of  (4.2) and (4.14) is customarily solved approximately by use of asymptotic expansions, 
without any error estimate. In [3] and [4], quantitative results on domains of stability or in- 
stability are given only for v not exceeding ten. A comparison with these results in the available 
literature reveals that the conclusions on uniform boundedness, as following from (4.12), hold 
generally for every v E I~l and without any unaccounted procedural errors involved. 
Remarks: 1). The choice of a very small positive constant/~ may be of interest in practical ap- 
plications which usually are concerned with only a bounded interval of time t. 2) Correspond- 
ingly, the admission of Fourier expansions (if uniformly convergent) fo ry (x ,  0) or ay(x ,  O)/at 

is tractable; 3) Mathematical models with periodically modulated coefficients are employed in 
electrical engineering, either ivp or hyperbolic ibvp (for the transmission of  waves), e.g. [12, p. 
466]. 

5. On Taylor-approximations of  sets of  solutions depending on constant coefficients 

5.1 Introduction to the problem 

Any mathematical model is considered which possesses oscillatory or wave-type solutions: 

A ( z ( ° ) ) u = f  for ( x , t ) E D : = D o  x J C  ~n+l, J:=(0, T] C R, 

u , f : D ~  m, U E U u ,  f E U I ,  A : U  u X I z ~ U j ,  , (5.1) 

z (°) E I  z C RP with z (°) fLxed. 

Here, t is a time-like independent variable and x represents one or several spatial independent 
variables; U u and Uf are function spaces with suitable smoothness properties. 

In many real-world problems, a mathematical model (5.1) is to be examined not only for the 
fixed parameter z (°) E 1 z but rather for every z E I z ; hence, a collection of problems 

A ( z ) u = f  for ( x , t ) E D ,  eve ryz=(z l  ..... z p ) r E l z  (5.2) 

will be discussed subsequently. A particularly important motivation is the problem of a (quan- 
titative) sensitivity analysis of the solution u t°) (x, t):= u(x ,  t; z t°)) of  (5.1) with respect to 
(small) changes z E I z of parameters such that z 4= z (°). If (5.1) represents the hyperbolic ibvp 
of the 'telephone line' (compare Section 6), the distortions of electro-magnetic signals are of 
interest which are due to small deviations of  the real 'fabricated' parameters z k from the intend- 
ed 'design values' z k (°) 

In real-world problems, the consequences of  an uncertainty o fz  (°) usually cannot be inves- 
tigated completely via the prescription of an interval Iz ~ z ~°) since there is usually not enough 
pertinent information available. If this problem is treated in the context of a stochastic theory, 
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probability values are chosen to measure the probability of  the events that  the z k deviate from 
zk(°)  by a certain magnitude. This problem can be treated alternatively by examining a nested 
sequence of  intervals lz(r) with r = l(1)q and q E ~ fixed such that  there holds z (°) E lz(r) 
for r = 1 (1)q and each 1 z Cr) is characterized by a fixed probability parameter• This yields a nest- 
ed sequence of  sets o f  solutions• 

For practical purposes, it is usually sufficient to have quantitative information on the gener- 
ally nonlinear function u(x,  t; z), for fixed choices of  (x, t ) E  D. This quantitative sensitivity 
analysis can be carried out in a conservative fashion by the construction of  outer approximations 
for the envelopes of  the sets o f  solutions pertaining to several choices of  nested intervals I z (r) as 

introduced above. 

Since z E IR p , it is possible for any fixed (x, t ) E D  to represent u(x ,  t; z )v ia  a Taylor-poly- 
nomial with remainder term provided that suitable smoothness conditions are satisfied. This 
approach yields a local approximation o f u ( x ,  t; z) as a function o f z  in a neighborhood o f z  C°~. 
I f  the remainder term is ignored, this is a customary perturbation analysis. 

5.2. On Taylor-representations o f  the solutions as functions o f  the parameters 

It is assumed that the solution u(t,  u; z) of  (5.1) possesses the following properties: 

(i) u exists uniquely for every (x, t ; z )  E D  x I ;  
(ii) at every fixed (x, t) ~ D ,  there holds u E c(q+l) ( l z )  

with a fixed q + 1 E N .  
(5.3) 

At any fixed (x, t) E D, then, u(x,  t; z) can be represented via the following Taylor-approxima- 

tion with remainder t e r m  Rq+ 1 : 

u(x,  t, z) = u(x,  t, z (°)) + [(z -- z(°)) • V] u(x ,  t; z ~°)) + ... + 

+ [(z --  zt°)) • V] qu(x,  t; z ~°)) + Rq+l (x, t; z, zt°))),  

where 

P 
(z - z ( ° ) ) . V : =  ~ (z i - zi (°)) , 

]--~ azj 
(5.4) 

1 

~Xq+l"- (q + 1)! 

[(z - z ( ° ) ) - V ]  TM u l ( x ,  t ; z  (°) +Jl ( z  - z(° ) ) )  / 

[(z - z ( °~) .  ~ q ÷ l  um(x  ' t;  z ¢0~ + Jm(z  - z ¢ ° ~ ) ) /  

with Ji(x, t) E (0, 1) fo r ]  = l (1 )m.  

The validity of  this local approximation at z (°) in terms o f  the zj - zj (°) depends (i) on the 
proximity of  the solutions u(x ,  t; z) for every z E I z  with (x, t) E D  fixed and, therefore, on the 
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magnitude o f  Rq+ 1 and (ii) on the possibility to come up with a meaningful quantitative esti- 

mate o f R q +  1 . 

The construction of  (5.4) generally cannot be executed if the operator A in (5.1) con- 

tains partial differential equations. This is not so if (5.1) employs only ordinary differential 

equations or  if the dependency o f  the solution on parameters is known explicitly. As an example, 

(5.1) is assumed to be a collection o f  ivp: 

u'l = f i ( t , u , z )  for t e J ,  i = l ( 1 ) n ,  ZEIz  e ~ P ,  u = ( u l  ..... Un)T: 

J x l z - ~  ~x m, f = ( f ,  .... fn)T E c ( l ' q ' q ) ( j x ~ r n  x l z )  where t ~ = l + q .  
(5.5) 

According to [7, p. 35], then there hold for sufficiently small T in  J := (0, 7"]. 

(i) a unique solution u(t, ~) with u E C 1 (J) exists for every fixed 2 E I z and 

(ii) the solution u( / ;  z) satisfies u C C 1+o (Iz) for every fixed i E J. 
(5.6) 

The following example shows that the local approximation of  solutions being discussed is 

only o f  restricted validity in the case o f  oscillatory solutions. 

The collection o f  ivp 

u " + z 2 u = O  for t E J : = ( 0 ,  oo), u ( 0 ) = 0 ,  u ' ( 0 ) = l ,  

every z E I  z := [1 - /5 ,  1 + 8], 8 C IR + is arbitrarily small, (5.7) 

possesses the solutions u = (sin zt)/z and, therefore, the following Taylor-representation with 

respect to z (°) = 1 : 

u( t ; z )  = sin t + (z - 1)(t cos t - sin t) + 

+.. .  for t E J ,  z E I  z. 

(z 
|'~'/2 ( - - t  2 sin t - 2 t  cos t + 2 sin t) 

I 

2 
(5.8) 

The v-th term of  this expansion, with v + 1 E lq, contains a factor t v. If truncated with the v-th 
term, the corresponding polynomial is a meaningful local approximation for t E Co := [0, To] 

c [0, oo) with To(8) sufficiently small. For t E C m := (To, T m ] C [0, oo), interpolations with re- 

spect to z E I z may be used to construct a meaningful approximation of  the solutions u. For 

t E C~ := [0, oo)\(C o U Cm ), local approximations or interpolations fail entirely, and solutions 
u(t; z) have to be studied separately for each individual z E Iz. 

The local approximations to be employed subsequently will be used only in the initial time- 

domain, Co, whose extent depends on the span of  the admitted parameter interval I z. This ex- 

tent can be increased if I z is suitably partitioned and local approximations o f  the solutions are 
constructed separately for each subinterval o f / z  . 
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6. 

6.1 

Sensitivity of the linear telephone line 

Introduction 

In the discussion and analysis of  telephonic transmission (GuiUemin [5]) in a pair of  linear con- 
ductors, the telephone equation 

e ~  = LCeii + (LG + RC)ei + RGe, (6.1) 

stated for the voltage e(x, t), is important. Here, C, G, L, and R are capacitance, conductance, 
inductance, and resistance (all per unit length), respectively. By means of the scaling transfor- 
mation [ = at, Yc = bx, with a = (RG)-I/2 and b = (LG + RC)[RG, equation (6.1) becomes 

/a (6.2) exx - (1 + gt) 2 ett+ et + e, 

where #:= RC/LG is the third basic parameter and the one we shall be concerned with in the 
following work. 

If # =/ao = 1 this is the well-known distortionless line. A sensitivity analysis will be carried 
out in a neighborhood of # = 1 with a and b fixed (note that a and b only occur in the dimen- 
sioned equation) by means of a Taylor-series expansion in the parameter g with remainder term, 

i)  ae (x , t ;  1) + e ( x , t ; # ) = e ( x , t ; 1 ) + ( l a -  bU 

(6.3) 
1 O2---£e (x,  t;  1 + 0 (/a - 1)),  0 @ (0,1) .  + ~.t (,u - I) 2 a/a2 

Before starting the analysis we set 

e(x, t; la)=: exp (--(1 + tOz t]2#)y(x,  t; #), (6.4) 

whereupon the equation fo ry  becomes 

/a O~ - 1) 2 
Y x x -  (1 +/a) 2 Ytt  ~ y. (6.5) 

For the distortionless line the equation for y becomes 4Yxx = Ytt" Then the general solution 
for e is 

e(x, t; 1) = exp ( - 2  0 {f(x + 2t) +g(x - 2t)}, 

where f and g are arbitrary C 2 functions. 
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6.2 Sensitivity analysis o f  an exact solution for semi-infinite lines 

The auxiliary conditions to be used for  (6.2) are 

e(O,t; la)=f(t) ,  e(x,O;ts)=et(x,O;la)=O, 
e(x -. oo, t; Is) is finite. (6.6) 

They become the conditions 

y (0, t ; /a)  = exp ((1 + 0) 2 t/2la)f(t) =: g(L I~), 
y (x ,  0;/~) = Yt(X, 0;/a) = 0, (6.7) 
y (x -~ ~ ,  t ,/a) is f'mite, 

for equation (6.5). 

Designating E(x,  s; it), Y(x, s; Is) and F(s) as the Laplace transforms of  e, y and f ,  respec- 
tively, one easily finds that  

E(x,  s;la) = F(s) exp X + 2-----~ ' 

where the function X2 is given by 

~k2(r)._ /d r2 ( / a -  1) 2 
(1 + 0) 2 4/a (6.9) 

Upon setting r : = s + (1 +/a) 2/(2/a) it is easily verified that  

( ~ g ~ ) 2 )  /1 s2 ~o2(s;/a). (6.10) X 2 s +  - ( l + / a )  2 + s + l = :  

Clearly co 2 > 0 for all real s > 0. In this notation (6.8) becomes E(x, s; ta) = F(s) exp [-co(s ;/s)x]. 
From this it is easily shown that Ow/O# I u= 1 = 0, whereupon there will not be any first order 
term (in 0a - 1)) in (6.3) after inversion. 

Because of  the possibility for obtaining an exact solution here the second order term will be 
computed exactly. Subsequently, we will discuss an estimation for the second order terms, 
thought of  as a remainder term, in the series. 

A second computat ion shows that  there is a second-order effect, whereupon 

E(x,s;l.l)=F(s)exp [-(s+ 2)x/2] t l+ Oa-8 1)__2 s+2XS~ t (6.11) 
to second order in powers of  (# - 1). 



42 

To illustrate, suppose f ( t )  = sin t. Then F(s) = (s 2 + 1) -1 and 

• t 1 I( / . t~81)2 1 s~ ~ E = e x p [ - ( s + 2 ) x / 2 ]  ~ + _ X + . . .  
(s + 2 ) ( s  2 + 1) 

which is to be inverted. From standard tables the inverse is easily found to be 

e(x,  t ; # )  = exp ( - x )  u ( t  - x /2 )  {sin (t - x/2)} (6.12) 

+ ( #  - 1)------~= x [ exp  ( - 2 ( t  - x / 2 ) )  + cos  ( t  - x / Z )  - 2  sin (t  - x / 2 ) ]  + . . .  
4O 

accurate to terms of  order two in (# - 1). Here u( t  - x /2 )  is Heaviside's step function 

u ( t  - x / 2 ) :  = l 

O, t < x /2 ,  

t 1, t > x / 2 .  

Remark  1. The finite line with auxiliary conditions e(0, t ; /a)  = f ( t ) ,  e(1,  t ; /a )=  0, e(x,  0;/1) 
= et(x , 0;/a) = 0 can be treated in a similar fashion. In this case it is found that 

E(x ,  s ;# )  = F(s) sinh {~  (s;g) (1 - x)}/sinh ~ ( s ; # )  where ~o(s;/a) was defined in (6.10). 

Remark  2. If  a sensitivity analysis is also desired with respect to the parameters a and b of  Sec- 
tion 6.1, additional terms in (a - ao) and (b - bo), where ao and bo are reference values, would 
arise. The computation is similar to that described above. 

Remark  3. When the remainder form is used for E (see (6.3)) in the form 

( # - 1 )  2 0 = E ( x , s ; l + O ( # - l ) )  
• ( 6 . 1 3 )  E ( x , s , # ) = E ( x , s ; 1 ) +  2 ala 2 ' 

0 E (0,1), the quantity 0 is not known. Therefore, an interval evaluation of  the second derivative 
in (6.13) is proposed for every/a E [1 - 8, 1 + 6] with 6 fixed, 0 < 8 < <  1. Since 

i}/a 2 - ~#--g - x exp ( - w x )  a/a ] ] 

= : - x F ( s )  £2 (x ,  s ; la), 

it is sufficient to compute an interval for ~2(x, s ; # )  E [~2_, £Z+], where ~2_, g2+ depend upon 

x and s only. 

Remark4 .  Following (6.10), it was shown via a differentiation of  (6.8) that bE/b# = 0 fo r#  = 1. 
If an explicit solution for E were not known, a linear hyperbolic problem for z := OE(x,s  ;#)/O/a 
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could be derived by use o f  differentiations with respect to/a of  the individual equations in (6.5) 
and (6.7). This problem for z possesses only the trivial solution in the case of  bt = 1, if lim y = 0 
as x -+ oo for every t = 0. This vanishing boundary value of  y is obtained automatically in the 
preceding construction of  the explicit solution via the Laplace transform Y of  the solution of  
(6.5), (6.7). 

Further let co E [co_, co+], ~co/~/a E [co_', co+' ] and a 2 (.,O/~/.l 2 E [GO_ tt, (..O+tt], where co_, co+, 

co_' . . . . .  co+" only depend upon s. 
The interval evaluation will be carried out for the following equivalent functional represen- 

tation of  ~2 and every/a E [1 -- 8, 1 + 8 ] : 

exp, , 2 )'+ 
V ~(1 + u y  

(6.14) 

Equation (6.14) follows from the calculations of  aco/a/.t and a 2 co/D/a s , which become 

and 

aco/Dla = s 2 (1 -/a)/co(1 + #)3 

1 {_2( 1-# )2 s4 ~ 2 # - 4 ~ 1 }  
a=colau= = ~-~ (1 +#)3 ~q- +s2 k(1 + # ) ' ] l  

1 {-2 (aco) 2 s= /-2~-4 )} 
- 2co ~-~ + \ (1  +#)4 • 

Then, according to [1] or [8], 

~ _  = 

and 

exp ( - c o _ x )  + (4  - 
2co_ { 2  (co+') = s 2 ~ _ 2 _ ( 1 ~ 6 ) ) }  

~ + =  e x p ( - c o + X ) { s 2 ( 4 - 2 ( l + 8 ) ) }  
2co+ (-2 -+--67 ' 

where 

co_=  l + s +  (2 8)  5 s2 

, 6 S 2 t 
co+ (2 - 8) 3 co_ - 

0,)+ E 1 1 + 6  s2 
1 + s +  (2_6)------ 5 

- x exp ( -co_x)(co+' )  2 (6.15a) 

(6.15b) 

since (aco/au) ~ ~ [o, (co+')q. 
The inverse Laplace transform can be simplified if 0 < 8 < <  1 by expanding the square root as 

4- 

l + s +  (2+8)---------- ~ "~ T ( s + 2 ) +  2(s-+2) 1 - 8  - 4  
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with 

~ ' : =  

± 

2 

The calculation of this remark is typical of an interval evaluation of remainder terms. 

6.3 Sensitivity analysis for a finite line with zero boundary data 

The problem of (6.1) is studied again for the auxiliary conditions 

e(x,O;u)=f(x), et(x,O;ta)=e(O,t;ta)=e(1,t;u)-O , 

on the domain 0 < x < 1, 0 < t < ~. 
The classical separation of variables yields the solution 

e(x, t ; # ) =  exp [-(1 + U)2t/20] Aj sin cojx cos 5it, (6.16) 
j=l 

where the A j, j = 1,2 . . . .  are the Fourier-sine coefficients for f(x), which are independent of/a, 
~" j~  .= are the eigenvalues and 

6~ ' -  (/~+1)2 I J 2 r r 2 / ~  ( ~ - 1 ) 2 ]  " 4 ~ t  (6.17) 

We suppose/a is such that ~r 2 > (~t - 1)2/(4~) to avoid the situation where linear or real expo- 
nential solutions arise during the separation process. (This holds for ~ on the range 0 < # < (~-45)). 

Expansion of the exact solution for e(x, t;/a) in powers of (/a - 1) gives the solution 

e(x' t' l~) = e-2t ~ ~=j 1 Aj sin ]zrx cos 2jrrt + 

+ (12-1)2 t I ~'G= A j s i n j ~ r x c ° s 2 j l r t 2  1 

1t ? Aj \ ~/.~-1) sinjTrxsin2jzrt . 
j=l 

Remark 5. Again there is no first-order dependence on (# - 1) indicating that the solution is 
insensitive to sufficiently small changes of the physical parameter/a = RC/(LG). 
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